Focusing Solenoids

Yuri Tereshkin

Fermilab Accelerator Advisory Committee
May 10th – 12th, 2006

Outline

- Introduction to Solenoid Focusing
- Requirements and Availability
- R&D Issues:
 - Magnetic Modeling
 - Strand Choice
 - Stress Management
 - Quench Protection
- Test Coil Program
- What's next on the agenda

How It Works

- 1. Radial component of a fringe field combined with asymmetric particle rotation provides radial component of the particle velocity;
- 2. Rotation in the longitudinal field results in different azimuthal position of the particles after the lens.

$$f = R \cdot \frac{\beta c}{v_R} = 4 \frac{m^2}{q^2} \beta^2 c^2 \cdot \frac{1}{B_c^2 L_{eff}} = \frac{8 \cdot \frac{m}{q} \cdot T(eV)}{B_c^2 L_{eff}}$$

Example: B = 5T, $L_{eff} = 7.5$ cm (~3") ->> f = 13 cm;

Distance between the lenses must be shorter than 0.5 m;

To increase this distance, L_{eff} and/or B_c must be adjusted ->> beam size increases.

Brillouin field: **BB**² = **6.9·10**⁻⁷**·I** / (**a**²**·U**^{1/2})

a = 2 mm, U = 50 kV, $I = 40 \text{ mA} \rightarrow BB = 55 \text{ Gs}$

Requirements

	MEBT/RT CH	SSR-1	SSR-2
Number of solenoids in the section	19 (3 + 16)	18 (9 x 2)	б
<u>Parameter</u>			
Bore diameter	20 mm	30 mm	30 mm
Bore type	warm	cold	cold
Field Integral FI = $\int B^2 dl (T^2 \cdot cm)$	180	300	500
Margin	30%	30%	30%
Leff (cm) @ Bm	< 10 cm		
Field extension	< 2*Leff	Sharp edges	Sharp edges
Cryostat type	Stand alone	Integrated	Integrated
Cold mass length (mm)	130	219	294

- Integrated strength: $FI = \int_{-\infty}^{+\infty} B_z^2 dz$

- Effective length: $L_{\rm eff} = \int_{-\infty}^{+\infty} B_z dz / B_0$

- Field integral ratio over $2L_{\rm eff}$. $FIR = \int_{-L_{\rm eff}}^{+L_{\rm eff}} B_z dz / \int_{-\infty}^{+\infty} B_z dz$

Examples of Implementation

				T	
Linac:	RIA-MSU	Amer. Magnetics	Cryomagnetics	ISAC-II, TRIUMF	SARAF
<u>Parameter</u>					SOREQ, Israel
Bore diameter	40 mm	30 mm	52 mm	26 mm	35 mm
Bore type	Cold	Cold	Warm	Cold	Cold
B2L (m*T^2)		12.55 T2m		~27.5, ~36.4 @ 9T	
Bm	9 T	9 T	17 T	9 T	6 T
Leff	100 mm			400 mm, 500 mm	88 mm
Lmax	340 mm	300	385 mm	550 mm, 680 mm	280 mm
Transverse					
Dimension	300 mm		280 mm	OD 325 mm; 370 mm	
Fringe Field	End bucking coils.	End bucking coils.		To 4 fee dain = 1 and 1	
Compensation	Nb Shield (150 Gs)	Iron Shield	Non	End bucking coils	Active Shield
Fringe Field Level				~ 800 Gs @ 130 mm	
@ cavity wall	10 mGs	300 Gs		from the end	~ 200 Gs @ cav
Magnetic field at				10 Gs	
"zero" current				10 Gs	100 mGs (10 mkT)
Temperature	4.2 K	4.2 K	4.2 K	4.2 K	4.2 K
Material	Nb-Ti-Ta	Nb-Ti	Nb-Sn?	Nb-Ti	Nb-Ti, 0.6 mm
a .				95 A @ 9T;	
Current	68 A (98 max)_			107 A @ 11 T	
Manufacturer	Cryomagnetics	Am. Magnetics	Cryomagnetics	ACCEL	ACCEL
Year	•	2002		2004	
g				Bob Laxdal,	
Source	Terry Grimm	Note	Advert	George Clark	Mike Pekeler
				100 KE - prototype,	
Cost	~ 70 K			~ 50 K product.	~ 20 K

Solenoid R&D Constituents

Coordination:

J. Tompkins, I. Terechkine

Strand R&D:

E. Barzi,

D. Turrioni,

T. Wokas,

A. Makarov

V.V. Kashikhin,

B. Wands,

P. Bauer,

I. Terechkine

Design:

G. Davis,

T. Page,

T. Wokas,

I. Terechkine

Fabrication:

TD Procurement, T. Wokas

T. Wokas, Y. Pischalnikov and MTF stuff

M. Tartaglia, and MTF stuff

Test Results Analysis:

M. Tartaglia, I. Terechkine

Strand R&D

- SSC dipole inner layer NbTi strand (IGC): strand diameter ~ 0.808 mm filament diameter ~ 6 mkm
- Modified SSC strand to increase coil compaction factor
- "Oxford" rectangular 0.9 x 0.6 mm² strand filament diameter ~ 70 mkm
- Round Oxford strands for compensation coils

Magnetic Modeling

Magnetic Modeling

Strand Parameters

Parameter	Unit	Main	Bucking
Bare (round) strand diameter	mm	0.808	0.600
Strand insulation thickness	mm	0.025	0.025
Copper to non-copper ratio	-	1.3	1.3
Non-Cu critical current density at 5 T, 4.2 K	A/mm ²	2750	2750
Engineering current density at 1 A current	A/mm ²	1.3774	-2.4749

Packing (or compaction) factor:

$$K = \sum (S_strand) / S_coil$$

Global Parameters

Parameter	Unit	Value
Coil aperture	mm	55
Number of turns in the main coil	1	100x26
Number of turns in the bucking coils	1	2x10x37
Average strand packing factor in the main coil	1	0.71
Average strand packing factor in the bucking coils	-	0.70
Yoke length	mm	130

Performance at quench

Magnet current	A	250.32
Central field, B_0	Т	7.156
Peak field in the coil, Break	Т	7.894
Field integral, FI	T^2 cm	314.65
Effective length, Left	mm	81.774
Field integral ratio over 2L _{eff} , FIR-100%	%	98.68
Peak radial field at 10 mm off the axis	T	0.87
Stored energy	kJ	7.796
Magnet inductance	H	0.249
Axial force per bucking coil	ķŊ	45.90

Stress Management

- Stress accumulation during winding
- Stress generation during cooling down
- Stress redistribution during excitation
- Pre-stress application during assembly

Main Results of study in:

- Analysis of Stress in PD Front End Solenoids TD-05-039;
- 2. Test Solenoid Design Proposal TD-05-040;
- 3. Review 08-31-05
- 4. Bob Wands: TD-06-018, TD-06-19
- 5. G. Davis, et al, TD-06-020

Stress Management

Stress Management

Quench Protection Issues

How quench propagates? How long it takes? What can be the maximal temperature in the coil?

Main results of the study can be found in:

1. Focusing Solenoid Quench Protection Studies.

Part I: Method Description and the First Iteration. TD-06-003

2. Focusing Solenoid Quench Protection Studies.

Part II: Test Solenoid Quench Protection. TD-06-004

3. Solenoid Quench Heater TD-06-006

4. Review 12-02-2005

Quench Propagation

a) I = 200 A; t = 3.5 ms, 90 ms, 220 ms

b) I = 250 A, t = 2 ms, 70 ms, 120 ms

c) I = 330 A, t = 0.3 ms, 12.5 ms, 44 ms

Coil Heating

Test Solenoid Program

Central Field at quench current – 7.1 T

Maximal Field in the Coil - 7.5 T

Main Test Results So Far

Stress history

Measured and calculated field distribution

Quench-onset-at-308-A-(ms)
0:0
310
7a k
25a B
40a B
No•records¤ :

Current shape

Quench current is within 1% from the prediction

Quench propagation rate is as expected

Tentative R&D Schedule

